Cited 14 time in
Proteomic Analysis Reveals the Dynamic Role of Silicon in Alleviation of Hyperhydricity in Carnation Grown In Vitro
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Muneer, Sowbiya | - |
| dc.contributor.author | Wei, Hao | - |
| dc.contributor.author | Park, Yoo Gyeong | - |
| dc.contributor.author | Jeong, Hai Kyoung | - |
| dc.contributor.author | Jeong, Byoung Ryong | - |
| dc.date.accessioned | 2022-12-26T17:18:14Z | - |
| dc.date.available | 2022-12-26T17:18:14Z | - |
| dc.date.issued | 2018-01 | - |
| dc.identifier.issn | 1661-6596 | - |
| dc.identifier.issn | 1422-0067 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/12032 | - |
| dc.description.abstract | The present study depicted the role of silicon in limiting the hyperhydricity in shoot cultures of carnation through proteomic analysis. Four-week-old healthy shoot cultures of carnation Purple Beauty were sub-cultured on Murashige and Skoog medium followed with four treatments, viz. control (-Si/-Hyperhydricity), hyperhydric with no silicon treatment (-Si/+Hyperhydricity), hyperhydric with silicon treatment (+Si/+Hyperhydricity), and only silicon treated with no hyperhydricity (+Si/-Hyperhydricity). Comparing to control morphological features of hyperhydric carnations showed significantly fragile, bushy and lustrous leaf nature, while Si supply restored these effects. Proteomic investigation revealed that approximately seventy protein spots were differentially expressed under Si and/or hyperhydric treatments and were either up- or downregulated in abundance depending on their functions. Most of the identified protein spots were related to stress responses, photosynthesis, and signal transduction. Proteomic results were further confirmed through immunoblots by selecting specific proteins such as superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), PsaA, and PsbA. Moreover, protein-protein interaction was also performed on differentially expressed protein spots using specific bioinformatic tools. In addition, stress markers were analyzed by histochemical localization of hydrogen peroxide (H2O2) and singlet oxygen (O-2(1-)). In addition, the ultrastructure of chloroplasts in hyperhydric leaves significantly resulted in inefficiency of thylakoid lamella with the loss of grana but were recovered in silicon supplemented leaves. The proteomic study together with physiological analysis indicated that Si has a substantial role in upholding the hyperhydricity in in vitro grown carnation shoot cultures. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | MDPI | - |
| dc.title | Proteomic Analysis Reveals the Dynamic Role of Silicon in Alleviation of Hyperhydricity in Carnation Grown In Vitro | - |
| dc.type | Article | - |
| dc.publisher.location | 스위스 | - |
| dc.identifier.doi | 10.3390/ijms19010050 | - |
| dc.identifier.scopusid | 2-s2.0-85039054478 | - |
| dc.identifier.wosid | 000424407200048 | - |
| dc.identifier.bibliographicCitation | INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.19, no.1 | - |
| dc.citation.title | INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES | - |
| dc.citation.volume | 19 | - |
| dc.citation.number | 1 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Biochemistry & Molecular Biology | - |
| dc.relation.journalResearchArea | Chemistry | - |
| dc.relation.journalWebOfScienceCategory | Biochemistry & Molecular Biology | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
| dc.subject.keywordPlus | OXIDATIVE STRESS | - |
| dc.subject.keywordPlus | MEDIATED ALLEVIATION | - |
| dc.subject.keywordPlus | ANTIOXIDANT CAPACITY | - |
| dc.subject.keywordPlus | SIGNAL-TRANSDUCTION | - |
| dc.subject.keywordPlus | LIPID-PEROXIDATION | - |
| dc.subject.keywordPlus | SHOOT CULTURES | - |
| dc.subject.keywordPlus | RICE SEEDLINGS | - |
| dc.subject.keywordPlus | PLANTS | - |
| dc.subject.keywordPlus | TOLERANCE | - |
| dc.subject.keywordPlus | TOXICITY | - |
| dc.subject.keywordAuthor | carnation | - |
| dc.subject.keywordAuthor | hyperhydricity | - |
| dc.subject.keywordAuthor | immunoblots | - |
| dc.subject.keywordAuthor | mass spectrometer | - |
| dc.subject.keywordAuthor | proteomics | - |
| dc.subject.keywordAuthor | stress response | - |
| dc.subject.keywordAuthor | silicon | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
