Detailed Information

Cited 160 time in webofscience Cited 199 time in scopus
Metadata Downloads

A Novel PAPR Reduction Scheme for OFDM System Based on Deep Learning

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Minhoe-
dc.contributor.authorLee, Woongsup-
dc.contributor.authorCho, Dong-Ho-
dc.date.accessioned2022-12-26T17:16:00Z-
dc.date.available2022-12-26T17:16:00Z-
dc.date.issued2018-03-
dc.identifier.issn1089-7798-
dc.identifier.issn1558-2558-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/11864-
dc.description.abstractHigh peak-to-average power ratio (PAPR) has been one of the major drawbacks of orthogonal frequency division multiplexing (OFDM) systems. In this letter, we propose a novel PAPR reduction scheme, known as PAPR reducing network (PRNet), based on the autoencoder architecture of deep learning. In the PRNet, the constellation mapping and demapping of symbols on each subcarrier is determined adaptively through a deep learning technique, such that both the bit error rate (BER) and the PAPR of the OFDM system are jointly minimized. We used simulations to show that the proposed scheme outperforms conventional schemes in terms of BER and PAPR.-
dc.format.extent4-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleA Novel PAPR Reduction Scheme for OFDM System Based on Deep Learning-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/LCOMM.2017.2787646-
dc.identifier.scopusid2-s2.0-85040065945-
dc.identifier.wosid000427134600019-
dc.identifier.bibliographicCitationIEEE COMMUNICATIONS LETTERS, v.22, no.3, pp 510 - 513-
dc.citation.titleIEEE COMMUNICATIONS LETTERS-
dc.citation.volume22-
dc.citation.number3-
dc.citation.startPage510-
dc.citation.endPage513-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordPlusAVERAGE POWER RATIO-
dc.subject.keywordPlusNETWORK-
dc.subject.keywordAuthorOrthogonal frequency division multiplexing-
dc.subject.keywordAuthorautoencoder-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorpeak-to-average power ratio-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > 지능형통신공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE