Cited 168 time in
Deep Learning-Aided SCMA
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kim, Minhoe | - |
| dc.contributor.author | Kim, Nam-I | - |
| dc.contributor.author | Lee, Woongsup | - |
| dc.contributor.author | Cho, Dong-Ho | - |
| dc.date.accessioned | 2022-12-26T17:03:59Z | - |
| dc.date.available | 2022-12-26T17:03:59Z | - |
| dc.date.issued | 2018-04 | - |
| dc.identifier.issn | 1089-7798 | - |
| dc.identifier.issn | 1558-2558 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/11763 | - |
| dc.description.abstract | Sparse code multiple access (SCMA) is a promising code-based non-orthogonal multiple-access technique that can provide improved spectral efficiency and massive connectivity meeting the requirements of 5G wireless communication systems. We propose a deep learning-aided SCMA (D-SCMA) in which the codebook that minimizes the bit error rate (BER) is adaptively constructed, and a decoding strategy is learned using a deep neural network-based encoder and decoder. One benefit of D-SCMA is that the construction of an efficient codebook can be achieved in an automated manner, which is generally difficult due to the non-orthogonality and multi-dimensional traits of SCMA. We use simulations to show that our proposed scheme provides a lower BER with a smaller computation time than conventional schemes. | - |
| dc.format.extent | 4 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC | - |
| dc.title | Deep Learning-Aided SCMA | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1109/LCOMM.2018.2792019 | - |
| dc.identifier.scopusid | 2-s2.0-85041219177 | - |
| dc.identifier.wosid | 000429676700016 | - |
| dc.identifier.bibliographicCitation | IEEE COMMUNICATIONS LETTERS, v.22, no.4, pp 720 - 723 | - |
| dc.citation.title | IEEE COMMUNICATIONS LETTERS | - |
| dc.citation.volume | 22 | - |
| dc.citation.number | 4 | - |
| dc.citation.startPage | 720 | - |
| dc.citation.endPage | 723 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | sci | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Telecommunications | - |
| dc.relation.journalWebOfScienceCategory | Telecommunications | - |
| dc.subject.keywordAuthor | Sparse code multiple access (SCMA) | - |
| dc.subject.keywordAuthor | deep neural network (DNN) | - |
| dc.subject.keywordAuthor | autoencoder | - |
| dc.subject.keywordAuthor | deep learning | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
