Detailed Information

Cited 147 time in webofscience Cited 168 time in scopus
Metadata Downloads

Deep Learning-Aided SCMA

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Minhoe-
dc.contributor.authorKim, Nam-I-
dc.contributor.authorLee, Woongsup-
dc.contributor.authorCho, Dong-Ho-
dc.date.accessioned2022-12-26T17:03:59Z-
dc.date.available2022-12-26T17:03:59Z-
dc.date.issued2018-04-
dc.identifier.issn1089-7798-
dc.identifier.issn1558-2558-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/11763-
dc.description.abstractSparse code multiple access (SCMA) is a promising code-based non-orthogonal multiple-access technique that can provide improved spectral efficiency and massive connectivity meeting the requirements of 5G wireless communication systems. We propose a deep learning-aided SCMA (D-SCMA) in which the codebook that minimizes the bit error rate (BER) is adaptively constructed, and a decoding strategy is learned using a deep neural network-based encoder and decoder. One benefit of D-SCMA is that the construction of an efficient codebook can be achieved in an automated manner, which is generally difficult due to the non-orthogonality and multi-dimensional traits of SCMA. We use simulations to show that our proposed scheme provides a lower BER with a smaller computation time than conventional schemes.-
dc.format.extent4-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleDeep Learning-Aided SCMA-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/LCOMM.2018.2792019-
dc.identifier.scopusid2-s2.0-85041219177-
dc.identifier.wosid000429676700016-
dc.identifier.bibliographicCitationIEEE COMMUNICATIONS LETTERS, v.22, no.4, pp 720 - 723-
dc.citation.titleIEEE COMMUNICATIONS LETTERS-
dc.citation.volume22-
dc.citation.number4-
dc.citation.startPage720-
dc.citation.endPage723-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordAuthorSparse code multiple access (SCMA)-
dc.subject.keywordAuthordeep neural network (DNN)-
dc.subject.keywordAuthorautoencoder-
dc.subject.keywordAuthordeep learning-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > 지능형통신공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE