Detailed Information

Cited 224 time in webofscience Cited 260 time in scopus
Metadata Downloads

Deep Power Control: Transmit Power Control Scheme Based on Convolutional Neural Network

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Woongsup-
dc.contributor.authorKim, Minhoe-
dc.contributor.authorCho, Dong-Ho-
dc.date.accessioned2022-12-26T17:01:22Z-
dc.date.available2022-12-26T17:01:22Z-
dc.date.issued2018-06-
dc.identifier.issn1089-7798-
dc.identifier.issn1558-2558-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/11586-
dc.description.abstractIn this letter, deep power control (DPC), which is the first transmit power control framework based on a convolutional neural network (CNN), is proposed. In DPC, the transmit power control strategy to maximize either spectral efficiency (SE) or energy efficiency (EE) is learned by means of a CNN. While conventional power control schemes require a considerable number of computations, in DPC, the transmit power of users can be determined using far fewer computations enabling real-time processing. We also propose a form of DPC that can be performed in a distributed manner with local channel state information, allowing the signaling overhead to be greatly reduced. Through simulations, we show that the DPC can achieve almost the same or even higher SE and EE than a conventional power control scheme, with a much lower computation time.-
dc.format.extent4-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleDeep Power Control: Transmit Power Control Scheme Based on Convolutional Neural Network-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/LCOMM.2018.2825444-
dc.identifier.scopusid2-s2.0-85045316165-
dc.identifier.wosid000435175800042-
dc.identifier.bibliographicCitationIEEE COMMUNICATIONS LETTERS, v.22, no.6, pp 1276 - 1279-
dc.citation.titleIEEE COMMUNICATIONS LETTERS-
dc.citation.volume22-
dc.citation.number6-
dc.citation.startPage1276-
dc.citation.endPage1279-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordAuthorconvolutional neural network-
dc.subject.keywordAuthortransmit power control-
dc.subject.keywordAuthorspectral efficiency-
dc.subject.keywordAuthorenergy efficiency-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > 지능형통신공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE