Detailed Information

Cited 6 time in webofscience Cited 0 time in scopus
Metadata Downloads

Artificial Neural Network-based Model for Predicting Moisture Content in Rice Using UAV Remote Sensing Data

Full metadata record
DC Field Value Language
dc.contributor.authorSarkar, Tapash Kumar-
dc.contributor.authorRyu, Chan-Seok-
dc.contributor.authorKang, Jeong-Gyun-
dc.contributor.authorKang, Ye-Seong-
dc.contributor.authorJun, Sae-Rom-
dc.contributor.authorJang, Si-Hyeong-
dc.contributor.authorPark, Jun-Woo-
dc.contributor.authorSong, Hye-Young-
dc.date.accessioned2022-12-26T16:48:29Z-
dc.date.available2022-12-26T16:48:29Z-
dc.date.issued2018-08-
dc.identifier.issn1225-6161-
dc.identifier.issn2287-9307-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/11440-
dc.description.abstractThe percentage of moisture content in rice before harvest is crucial to reduce the economic loss in terms of yield, quality and drying cost. This paper discusses the application of artificial neural network (ANN) in developing a reliable prediction model using the low altitude fixed-wing unmanned air vehicle (UAV) based reflectance value of green, red, and MR and statistical moisture content data. A comparison between the actual statistical data and the predicted data was performed to evaluate the performance of the model. The correlation coefficient (R) is 0.862 and the mean absolute percentage error (MAPE) is 0.914% indicate a very good accuracy of the model to predict the moisture content in rice before harvest. The model predicted values are matched well with the measured values (R-2 = 0.743, and Nash-Sutcliffe Efficiency = 0.730). The model results are very promising and show the reliable potential to predict moisture content with the error of prediction less than 7%. This model might be potentially helpful for the rice production system in the field of precision agriculture (PA).-
dc.format.extent14-
dc.language영어-
dc.language.isoENG-
dc.publisherKOREAN SOC REMOTE SENSING-
dc.titleArtificial Neural Network-based Model for Predicting Moisture Content in Rice Using UAV Remote Sensing Data-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.7780/kjrs.2018.34.4.4-
dc.identifier.wosid000447067400004-
dc.identifier.bibliographicCitationKOREAN JOURNAL OF REMOTE SENSING, v.34, no.4, pp 611 - 624-
dc.citation.titleKOREAN JOURNAL OF REMOTE SENSING-
dc.citation.volume34-
dc.citation.number4-
dc.citation.startPage611-
dc.citation.endPage624-
dc.type.docTypeArticle-
dc.identifier.kciidART002376907-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassesci-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaRemote Sensing-
dc.relation.journalWebOfScienceCategoryRemote Sensing-
dc.subject.keywordPlusCANOPY REFLECTANCE-
dc.subject.keywordPlusWINTER-WHEAT-
dc.subject.keywordPlusGRAIN-YIELD-
dc.subject.keywordPlusQUALITY-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusVARIABILITY-
dc.subject.keywordPlusVALIDATION-
dc.subject.keywordPlusPROTEIN-
dc.subject.keywordPlusSTRESS-
dc.subject.keywordAuthorANN-
dc.subject.keywordAuthorMoisture content-
dc.subject.keywordAuthorModel simulation-
dc.subject.keywordAuthorPrecision agriculture-
dc.subject.keywordAuthorUAV remote sensing-
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > 생물산업기계공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ryu, Chan Seok photo

Ryu, Chan Seok
농업생명과학대학 (생물산업기계공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE