Cited 0 time in
Artificial Neural Network-based Model for Predicting Moisture Content in Rice Using UAV Remote Sensing Data
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Sarkar, Tapash Kumar | - |
| dc.contributor.author | Ryu, Chan-Seok | - |
| dc.contributor.author | Kang, Jeong-Gyun | - |
| dc.contributor.author | Kang, Ye-Seong | - |
| dc.contributor.author | Jun, Sae-Rom | - |
| dc.contributor.author | Jang, Si-Hyeong | - |
| dc.contributor.author | Park, Jun-Woo | - |
| dc.contributor.author | Song, Hye-Young | - |
| dc.date.accessioned | 2022-12-26T16:48:29Z | - |
| dc.date.available | 2022-12-26T16:48:29Z | - |
| dc.date.issued | 2018-08 | - |
| dc.identifier.issn | 1225-6161 | - |
| dc.identifier.issn | 2287-9307 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/11440 | - |
| dc.description.abstract | The percentage of moisture content in rice before harvest is crucial to reduce the economic loss in terms of yield, quality and drying cost. This paper discusses the application of artificial neural network (ANN) in developing a reliable prediction model using the low altitude fixed-wing unmanned air vehicle (UAV) based reflectance value of green, red, and MR and statistical moisture content data. A comparison between the actual statistical data and the predicted data was performed to evaluate the performance of the model. The correlation coefficient (R) is 0.862 and the mean absolute percentage error (MAPE) is 0.914% indicate a very good accuracy of the model to predict the moisture content in rice before harvest. The model predicted values are matched well with the measured values (R-2 = 0.743, and Nash-Sutcliffe Efficiency = 0.730). The model results are very promising and show the reliable potential to predict moisture content with the error of prediction less than 7%. This model might be potentially helpful for the rice production system in the field of precision agriculture (PA). | - |
| dc.format.extent | 14 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | KOREAN SOC REMOTE SENSING | - |
| dc.title | Artificial Neural Network-based Model for Predicting Moisture Content in Rice Using UAV Remote Sensing Data | - |
| dc.type | Article | - |
| dc.publisher.location | 대한민국 | - |
| dc.identifier.doi | 10.7780/kjrs.2018.34.4.4 | - |
| dc.identifier.wosid | 000447067400004 | - |
| dc.identifier.bibliographicCitation | KOREAN JOURNAL OF REMOTE SENSING, v.34, no.4, pp 611 - 624 | - |
| dc.citation.title | KOREAN JOURNAL OF REMOTE SENSING | - |
| dc.citation.volume | 34 | - |
| dc.citation.number | 4 | - |
| dc.citation.startPage | 611 | - |
| dc.citation.endPage | 624 | - |
| dc.type.docType | Article | - |
| dc.identifier.kciid | ART002376907 | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | esci | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.relation.journalResearchArea | Remote Sensing | - |
| dc.relation.journalWebOfScienceCategory | Remote Sensing | - |
| dc.subject.keywordPlus | CANOPY REFLECTANCE | - |
| dc.subject.keywordPlus | WINTER-WHEAT | - |
| dc.subject.keywordPlus | GRAIN-YIELD | - |
| dc.subject.keywordPlus | QUALITY | - |
| dc.subject.keywordPlus | TEMPERATURE | - |
| dc.subject.keywordPlus | VARIABILITY | - |
| dc.subject.keywordPlus | VALIDATION | - |
| dc.subject.keywordPlus | PROTEIN | - |
| dc.subject.keywordPlus | STRESS | - |
| dc.subject.keywordAuthor | ANN | - |
| dc.subject.keywordAuthor | Moisture content | - |
| dc.subject.keywordAuthor | Model simulation | - |
| dc.subject.keywordAuthor | Precision agriculture | - |
| dc.subject.keywordAuthor | UAV remote sensing | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
