Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

The transcendence of zeros of natural basis elements for the space of the weakly holomorphic modular forms for Gamma(+)(0)(3)

Full metadata record
DC Field Value Language
dc.contributor.authorCHOI, SoYoung-
dc.date.accessioned2022-12-26T06:40:45Z-
dc.date.available2022-12-26T06:40:45Z-
dc.date.issued2022-07-
dc.identifier.issn0386-2194-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/1140-
dc.description.abstractWe consider a natural basis for the space of weakly holomorphic modular forms for Gamma(+)(0)(3). We prove that for some of the basis elements, if z(0) in the fundamental domain for Gamma(+)(0)(3) is one of zeroes of the elements, then either z(0) is transcendental or is in {i/root 3,-1+root 2i/3,-3+root 3i/6,-1+root 11i/6}.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.publisherNippon Gakushiin/Japan Academy-
dc.titleThe transcendence of zeros of natural basis elements for the space of the weakly holomorphic modular forms for Gamma(+)(0)(3)-
dc.typeArticle-
dc.publisher.location일본-
dc.identifier.doi10.3792/pjaa.98.009-
dc.identifier.scopusid2-s2.0-85135538014-
dc.identifier.wosid000829287800002-
dc.identifier.bibliographicCitationProceedings of the Japan Academy Series A: Mathematical Sciences, v.98, no.7, pp 47 - 51-
dc.citation.titleProceedings of the Japan Academy Series A: Mathematical Sciences-
dc.citation.volume98-
dc.citation.number7-
dc.citation.startPage47-
dc.citation.endPage51-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordAuthorweakly holomorphic modular form-
dc.subject.keywordAuthortranscendence-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, So Young photo

Choi, So Young
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE