Detailed Information

Cited 92 time in webofscience Cited 115 time in scopus
Metadata Downloads

Resource Allocation For Multi-Channel Underlay Cognitive Radio Network Based on Deep Neural Network

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Woongsup-
dc.date.accessioned2022-12-26T16:46:46Z-
dc.date.available2022-12-26T16:46:46Z-
dc.date.issued2018-09-
dc.identifier.issn1089-7798-
dc.identifier.issn1558-2558-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/11324-
dc.description.abstractIn this letter, a resource allocation strategy based on a deep neural network (DNN) is proposed for multi-channel cognitive radio networks, where the secondary user (SU) opportunistically utilizes channels without causing excessive interference to the primary user (PU). In the proposed scheme, the allocation of transmit power in each channel for SUs is found by utilizing the newly proposed DNN model, which separately determines the overall transmit power of individual SUs and the proportion of transmit power allocated to each channel. Both the spectral efficiency (SE) of' the SU and the amount of interference caused to the PU are considered in the training of the DNN model, such that the interference caused to the PUs can be properly regulated while the SE of the SU is improved. Through simulations, we show that our scheme enables a high SE of the SU to be achieved while the interference caused to the PU can be maintained at less than the threshold.-
dc.format.extent4-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleResource Allocation For Multi-Channel Underlay Cognitive Radio Network Based on Deep Neural Network-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/LCOMM.2018.2859392-
dc.identifier.scopusid2-s2.0-85050635148-
dc.identifier.wosid000444531700050-
dc.identifier.bibliographicCitationIEEE COMMUNICATIONS LETTERS, v.22, no.9, pp 1942 - 1945-
dc.citation.titleIEEE COMMUNICATIONS LETTERS-
dc.citation.volume22-
dc.citation.number9-
dc.citation.startPage1942-
dc.citation.endPage1945-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordPlusPOWER-
dc.subject.keywordAuthorMulti-channel cognitive radio network-
dc.subject.keywordAuthordeep neural network-
dc.subject.keywordAuthorresource allocation-
dc.subject.keywordAuthorspectral efficiency-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > 지능형통신공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE