Detailed Information

Cited 21 time in webofscience Cited 20 time in scopus
Metadata Downloads

Estimation of Transformation Temperatures in Ti-Ni-Pd Shape Memory Alloys

Full metadata record
DC Field Value Language
dc.contributor.authorNarayana, P. L.-
dc.contributor.authorKim, Seong-Woong-
dc.contributor.authorHong, Jae-Keun-
dc.contributor.authorReddy, N. S.-
dc.contributor.authorYeom, Jong-Taek-
dc.date.accessioned2022-12-26T16:46:37Z-
dc.date.available2022-12-26T16:46:37Z-
dc.date.issued2018-09-
dc.identifier.issn1598-9623-
dc.identifier.issn2005-4149-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/11311-
dc.description.abstractThe present study focused on estimating the complex nonlinear relationship between the composition and phase transformation temperatures of Ti-Ni-Pd shape memory alloys by artificial neural networks (ANN). The ANN models were developed by using the experimental data of Ti-Ni-Pd alloys. It was found that the predictions are in good agreement with the trained and unseen test data of existing alloys. The developed model was able to simulate new virtual alloys to quantitatively estimate the effect of Ti, Ni, and Pd on transformation temperatures. The transformation temperature behavior of these virtual alloys is validated by conducting new experiments on the Ti-rich thin film that was deposited using multi target sputtering equipment. The transformation behavior of the film was measured by varying the composition with the help of aging treatment. The predicted trend of transformational temperatures was explained with the help of experimental results.-
dc.format.extent7-
dc.language영어-
dc.language.isoENG-
dc.publisher대한금속·재료학회-
dc.titleEstimation of Transformation Temperatures in Ti-Ni-Pd Shape Memory Alloys-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.1007/s12540-018-0109-4-
dc.identifier.scopusid2-s2.0-85043689076-
dc.identifier.wosid000440153100001-
dc.identifier.bibliographicCitationMetals and Materials International, v.24, no.5, pp 919 - 925-
dc.citation.titleMetals and Materials International-
dc.citation.volume24-
dc.citation.number5-
dc.citation.startPage919-
dc.citation.endPage925-
dc.type.docTypeArticle-
dc.identifier.kciidART002375117-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusNEURAL-NETWORKS-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusPHASE-TRANSFORMATION-
dc.subject.keywordPlusPRECIPITATION-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusHEAT-
dc.subject.keywordAuthorShape memory alloys (SMAs)-
dc.subject.keywordAuthorTransformation temperatures-
dc.subject.keywordAuthorArtificial neural networks (ANN)-
dc.subject.keywordAuthorVirtual alloys-
dc.subject.keywordAuthorTi-Ni-Pd thin films-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Reddy, N. Subba photo

Reddy, N. Subba
공과대학 (나노신소재공학부금속재료공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE