Cited 20 time in
Antagonistic Effect of a Cytoplasmic Domain on the Basal Activity of Polymodal Potassium Channels
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Ben Soussia, Ismail | - |
| dc.contributor.author | Choveau, Frank S. | - |
| dc.contributor.author | Blin, Sandy | - |
| dc.contributor.author | Kim, Eun-Jin | - |
| dc.contributor.author | Feliciangeli, Sylvain | - |
| dc.contributor.author | Chatelain, Franck C. | - |
| dc.contributor.author | Kang, Dawon | - |
| dc.contributor.author | Bichet, Delphine | - |
| dc.contributor.author | Lesage, Florian | - |
| dc.date.accessioned | 2022-12-26T16:46:09Z | - |
| dc.date.available | 2022-12-26T16:46:09Z | - |
| dc.date.issued | 2018-09-04 | - |
| dc.identifier.issn | 1662-5099 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/11270 | - |
| dc.description.abstract | TREK/TRAAK channels are polymodal K+ channels that convert very diverse stimuli, including bioactive lipids, mechanical stretch and temperature, into electrical signals. The nature of the structural changes that regulate their activity remains an open question. Here, we show that a cytoplasmic domain (the proximal C-ter domain, pCt) exerts antagonistic effects in TREK1 and TRAAK. In basal conditions, pCt favors activity in TREK1 whereas it impairs TRAAK activity. Using the conformation-dependent binding of fluoxetine, we show that TREK1 and TRAAK conformations at rest are different, and under the influence of pCt. Finally, we show that depleting PIP2 in live cells has a more pronounced inhibitory effect on TREK1 than on TRAAK. This differential regulation of TREK1 and TRAAK is related to a previously unrecognized PIP2-binding site (R329, R330, and R331) present within TREK1 pCt, but not in TRAAK pCt. Collectively, these new data point out pCt as a major regulatory domain of these channels and suggest that the binding of PIP2 to the pCt of TREK1 results in the stabilization of the conductive conformation in basal conditions. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | FRONTIERS MEDIA SA | - |
| dc.title | Antagonistic Effect of a Cytoplasmic Domain on the Basal Activity of Polymodal Potassium Channels | - |
| dc.type | Article | - |
| dc.publisher.location | 스위스 | - |
| dc.identifier.doi | 10.3389/fnmol.2018.00301 | - |
| dc.identifier.scopusid | 2-s2.0-85054806014 | - |
| dc.identifier.wosid | 000443649100001 | - |
| dc.identifier.bibliographicCitation | FRONTIERS IN MOLECULAR NEUROSCIENCE, v.11 | - |
| dc.citation.title | FRONTIERS IN MOLECULAR NEUROSCIENCE | - |
| dc.citation.volume | 11 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Neurosciences & Neurology | - |
| dc.relation.journalWebOfScienceCategory | Neurosciences | - |
| dc.subject.keywordPlus | ALTERNATIVE TRANSLATION INITIATION | - |
| dc.subject.keywordPlus | BACKGROUND K+ CHANNEL | - |
| dc.subject.keywordPlus | CRYSTAL-STRUCTURE | - |
| dc.subject.keywordPlus | K-2P CHANNELS | - |
| dc.subject.keywordPlus | FATTY-ACIDS | - |
| dc.subject.keywordPlus | SELECTIVITY FILTER | - |
| dc.subject.keywordPlus | INDUCED INHIBITION | - |
| dc.subject.keywordPlus | ARACHIDONIC-ACID | - |
| dc.subject.keywordPlus | C-TERMINUS | - |
| dc.subject.keywordPlus | TREK-1 | - |
| dc.subject.keywordAuthor | potassium channel | - |
| dc.subject.keywordAuthor | resting membrane potential | - |
| dc.subject.keywordAuthor | excitability | - |
| dc.subject.keywordAuthor | PIP2-phosphatidylinositol-4,5-bisphosphate | - |
| dc.subject.keywordAuthor | structure function analysis | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
