Detailed Information

Cited 1 time in webofscience Cited 5 time in scopus
Metadata Downloads

Some identities of ordinary and degenerate Bernoulli numbers and polynomials

Full metadata record
DC Field Value Language
dc.contributor.authorDolgy, D.V.-
dc.contributor.authorKim, D.S.-
dc.contributor.authorKwon, J.-
dc.contributor.authorKim, T.-
dc.date.accessioned2022-12-26T16:16:50Z-
dc.date.available2022-12-26T16:16:50Z-
dc.date.issued2019-07-
dc.identifier.issn2073-8994-
dc.identifier.issn2073-8994-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/10758-
dc.description.abstractIn this paper, we investigate some identities on Bernoulli numbers and polynomials and those on degenerate Bernoulli numbers and polynomials arising from certain p-adic invariant integrals on p. In particular, we derive various expressions for the polynomials associated with integer power sums, called integer power sum polynomials and also for their degenerate versions. Further, we compute the expectations of an infinite family of random variables which involve the degenerate Stirling polynomials of the second and some value of higher-order Bernoulli polynomials. ? 2019 by the authors.-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI AG-
dc.titleSome identities of ordinary and degenerate Bernoulli numbers and polynomials-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/sym11070847-
dc.identifier.scopusid2-s2.0-85068553501-
dc.identifier.wosid000481979000012-
dc.identifier.bibliographicCitationSymmetry, v.11, no.7-
dc.citation.titleSymmetry-
dc.citation.volume11-
dc.citation.number7-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordAuthorBernoulli polynomials-
dc.subject.keywordAuthorDegenerate Bernoulli polynomials-
dc.subject.keywordAuthorDegenerate Stirling polynomials of the second kind-
dc.subject.keywordAuthorInteger power sums polynomials-
dc.subject.keywordAuthorP-adic invariant integral on p-
dc.subject.keywordAuthorRandom variables-
dc.subject.keywordAuthorStirling polynomials of the second kind-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kwon, Jong Kyum photo

Kwon, Jong Kyum
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE