Detailed Information

Cited 20 time in webofscience Cited 25 time in scopus
Metadata Downloads

Estimation of machinability performance in wire-EDM on titanium alloy using neural networks

Full metadata record
DC Field Value Language
dc.contributor.authorPaturi, Uma Maheshwera Reddy-
dc.contributor.authorCheruku, Suryapavan-
dc.contributor.authorSalike, Sriteja-
dc.contributor.authorPasunuri, Venkat Phani Kumar-
dc.contributor.authorReddy, N. S.-
dc.date.accessioned2022-12-26T06:40:26Z-
dc.date.available2022-12-26T06:40:26Z-
dc.date.issued2022-07-
dc.identifier.issn1042-6914-
dc.identifier.issn1532-2475-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/1060-
dc.description.abstractThe impact of process factors on wire-cut electrical discharge machining (WEDM) performance is complex and nonlinear. In the present work, initially, the WEDM tests were conducted on titanium alloy (Ti-6Al-4V) with eight input factors and four machinability performance parameters. Later, an artificial neural network (ANN) model was established to estimate the WEDM performance. The ANN model with 8-5-5-4 architecture produced a least mean squared error (MSE) and average prediction error (AE) for both training and test data sets. The precision of the ANN model was assessed by relating model predictions with the experimental values. The combined effect of WEDM variables on the machinability performance was illustrated with the help of visual graphs. The R-value (correlation coefficient) of 0.9995 among WEDM test values and ANN estimated values shows the robustness of the developed ANN model in establishing the link between WEDM process factors and machinability parameters. The proposed model helps in minimizing the time for fixing the process parameter values, thereby increasing production and process efficiency.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherMarcel Dekker Inc.-
dc.titleEstimation of machinability performance in wire-EDM on titanium alloy using neural networks-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1080/10426914.2022.2030875-
dc.identifier.scopusid2-s2.0-85124071061-
dc.identifier.wosid000748582900001-
dc.identifier.bibliographicCitationMaterials and Manufacturing Processes, v.37, no.9, pp 1073 - 1084-
dc.citation.titleMaterials and Manufacturing Processes-
dc.citation.volume37-
dc.citation.number9-
dc.citation.startPage1073-
dc.citation.endPage1084-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryEngineering, Manufacturing-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusSURFACE-ROUGHNESS-
dc.subject.keywordPlusINCONEL 718-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusWEDM-
dc.subject.keywordPlusANN-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusMACHINE-
dc.subject.keywordPlusWEAR-
dc.subject.keywordAuthorWEDM-
dc.subject.keywordAuthorTi-6Al-4V-
dc.subject.keywordAuthorroughness-
dc.subject.keywordAuthorspeed-
dc.subject.keywordAuthorwidth-
dc.subject.keywordAuthorMRR-
dc.subject.keywordAuthorexperimental-
dc.subject.keywordAuthorANN-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Reddy, N. Subba photo

Reddy, N. Subba
공과대학 (나노신소재공학부금속재료공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE